
Tiresias
Release 0.0.2

Thijs van Ede

Jun 22, 2022

CONTENTS:

1 Installation 3
1.1 From source . 3
1.2 Dependencies . 3

2 Usage 5
2.1 Overview . 5
2.2 Command line tool . 5
2.3 Code . 6

3 Reference 9
3.1 Preprocessor . 9
3.2 Tiresias . 12

4 Contributors 15
4.1 Code . 15
4.2 Academic Contributors . 15

5 License 17

6 Citing 19
6.1 Bibtex . 19

Index 21

i

ii

Tiresias, Release 0.0.2

Tiresias provides a pytorch implementation of Tiresias: Predicting Security Events Through Deep Learning. This code
was implemented as part of the IEEE S&P 2022 DeepCASE: Semi-Supervised Contextual Analysis of Security Events
paper. We ask people to cite both works when using the software for academic research papers, see Citing for more
information.

CONTENTS: 1

https://doi.org/10.1145/3243734.3243811
https://vm-thijs.ewi.utwente.nl/static/homepage/papers/deepcase.pdf

Tiresias, Release 0.0.2

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

The most straigtforward way of installing Tiresias is via pip

pip install tiresias

1.1 From source

If you wish to stay up to date with the latest development version, you can instead download the source code. In this
case, make sure that you have all the required dependencies installed.

Once the dependencies have been installed, run:

pip install -e <path/to/directory/containing/tiresias/setup.py>

1.2 Dependencies

Tiresias requires the following python packages to be installed:

• array-lstm: https://github.com/Thijsvanede/ArrayLSTM

• numpy: https://numpy.org/

• scikit-learn: https://scikit-learn.org/

• pytorch: https://pytorch.org/

All dependencies should be automatically downloaded if you install Tiresias via pip. However, should you want to
install these libraries manually, you can install the dependencies using the requirements.txt file

pip install -r requirements.txt

Or you can install these libraries yourself

pip install -U array-lstm numpy scikit-learn torch

3

https://github.com/Thijsvanede/Tiresias
https://github.com/Thijsvanede/ArrayLSTM
https://numpy.org/
https://scikit-learn.org/
https://pytorch.org/

Tiresias, Release 0.0.2

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

This section gives a high-level overview of the modules implemented by Tiresias. Furthermore it provides insights
into the use of the command line tool. We also include several working examples to guide users through the code. For
detailed documentation of individual methods, we refer to the Reference guide.

2.1 Overview

This section explains the design of Tiresias on a high level. Tiresias is a network that is implemented as a torch-train
Module, which is an extension of torch.nn.Module including automatic methods to fit() and predict() data.
This means it can be trained and used as any neural network module in the pytorch library.

In addition, we provide automatic methods to train and predict events given previous event sequences using the torch-
train library. This follows a scikit-learn approach with fit(), predict() and fit_predict() methods. We
refer to its documentation for a detailed description.

2.2 Command line tool

When Tiresias is installed, it can be used from the command line. The __main__.py file in the tiresias module
implements this command line tool. The command line tool provides a quick and easy interface to predict sequences
from .csv files. The full command line usage is given in its help page:

usage: tiresias.py [-h] [--csv CSV] [--txt TXT] [--length LENGTH] [--timeout TIMEOUT] [--
→˓hidden HIDDEN] [-i INPUT] [-k K] [-o] [-t TOP] [--save SAVE] [--load LOAD] [-b BATCH_
→˓SIZE] [-d DEVICE] [-e EPOCHS]

{train,predict}

Tiresias: Predicting Security Events Through Deep Learning

positional arguments:
{train,predict} mode in which to run Tiresias

optional arguments:
-h, --help show this help message and exit

Input parameters:
--csv CSV CSV events file to process
--txt TXT TXT events file to process
--length LENGTH sequence LENGTH (default = 20)
--timeout TIMEOUT sequence TIMEOUT (seconds) (default = inf)

(continues on next page)

5

https://github.com/Thijsvanede/torch-train
https://github.com/Thijsvanede/torch-train
https://github.com/Thijsvanede/torch-train

Tiresias, Release 0.0.2

(continued from previous page)

Tiresias parameters:
--hidden HIDDEN hidden dimension (default = 128)
-i, --input INPUT input dimension (default = 300)
-k, --k K number of concurrent memory cells (default = 4)
-o, --online use online training while predicting
-t, --top TOP accept any of the TOP predictions (default = 1)
--save SAVE save Tiresias to specified file
--load LOAD load Tiresias from specified file

Training parameters:
-b, --batch-size BATCH_SIZE batch size (default = 128)
-d, --device DEVICE train using given device (cpu|cuda|auto) (default = auto)
-e, --epochs EPOCHS number of epochs to train with (default = 10)

2.2.1 Examples

Use first half of <data.csv> to train Tiresias and use second half of <data.csv> to predict and test the prediction.

python3 -m tiresias train --csv <data_train.csv> --save tiresias.save # Training
python3 -m tiresias predict --csv <data_test.csv> --load tiresias.save # Predicting

2.3 Code

To use Tiresias into your own project, you can use it as a standalone module. Here we show some simple examples
on how to use the Tiresias package in your own python code. For a complete documentation we refer to the Reference
guide.

2.3.1 Import

To import components from Tiresias simply use the following format

from tiresias import <Object>
from tiresias.<module> import <Object>

For example, the following code imports the Tiresias neural network as found in the Reference.

Imports
from tiresias import Tiresias

6 Chapter 2. Usage

Tiresias, Release 0.0.2

2.3.2 Working example

In this example, we load data from either a .csv or .txt file and use that data to train and predict with Tiresias.

import Tiresias and Preprocessor
from tiresias import Tiresias
from tiresias.preprocessor import Preprocessor

##
Load data
##

Create preprocessor for loading data
preprocessor = Preprocessor(

length = 20, # Extract sequences of 20 items
timeout = float('inf'), # Do not include a maximum allowed time between events

)

Load data from csv file
X, y, label, mapping = preprocessor.csv("<path/to/file.csv>")
Load data from txt file
X, y, label, mapping = preprocessor.txt("<path/to/file.txt>")

##
Tiresias
##

Create Tiresias object
tiresias = Tiresias(

input_size = 300, # Number of different events to expect
hidden_size = 128, # Hidden dimension, we suggest 128
output_size = 300, # Number of different events to expect
k = 4, # Number of parallel LSTMs for ArrayLSTM

)

Optionally cast data and Tiresias to cuda, if available
tiresias = tiresias.to("cuda")
X = X .to("cuda")
y = y .to("cuda")

Train tiresias
tiresias.fit(

X = X,
y = y,
epochs = 10,
batch_size = 128,

)

Predict using tiresias
y_pred, confidence = tiresias.predict_online(

X = X,
y = y,
k = 3,

)

2.3. Code 7

Tiresias, Release 0.0.2

2.3.3 Modifying Tiresias

Tiresias itself works with an LSTM as implemented by ArrayLSTM from the array-lstm package. Suppose that we
want to use a regular LSTM instead, we can simply create a new class that extends Tiresias and overwrite the __init__
method to replace the ArrayLSTM with a regular LSTM.

Imports
import torch.nn as nn
from tiresias import Tiresias

Create a new class of Tiresias to overwrite the original
class TiresiasLSTM(Tiresias):

We overwrite the __init__ method
def __init__(self, input_size, hidden_size, output_size, k):

Initialise super
super().__init__(input_size, hidden_size, output_size, k)

Replace the lstm layer with a regular LSTM
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)

8 Chapter 2. Usage

CHAPTER

THREE

REFERENCE

This is the reference documentation for the classes and methods objects provided by the Tiresias module.

3.1 Preprocessor

The Preprocessor class provides methods to automatically extract event sequences from various common data formats.
To start sequencing, first create the Preprocessor object.

class preprocessor.Preprocessor(length, timeout, NO_EVENT=- 1337)
Preprocessor for loading data from standard data formats.

Preprocessor.__init__(length, timeout, NO_EVENT=- 1337)
Preprocessor for loading data from standard data formats.

Parameters

• length (int) – Number of events in context.

• timeout (float) – Maximum time between context event and the actual event in seconds.

• NO_EVENT (int, default=-1337) – ID of NO_EVENT event, i.e., event returned for con-
text when no event was present. This happens in case of timeout or if an event simply does
not have enough preceding context events.

3.1.1 Formats

We currently support the following formats:

• .csv files containing a header row that specifies the columns ‘timestamp’, ‘event’ and ‘machine’.

• .txt files containing a line for each machine and a sequence of events (integers) separated by spaces.

Transforming .csv files into sequences is the quickest method and is done by the following method call:

Preprocessor.csv(path, nrows=None, labels=None, verbose=False)
Preprocess data from csv file.

Note: Format: The assumed format of a .csv file is that the first line of the file contains the headers, which
should include timestamp, machine, event (and optionally label). The remaining lines of the .csv file will
be interpreted as data.

Parameters

9

Tiresias, Release 0.0.2

• path (string) – Path to input file from which to read data.

• nrows (int, default=None) – If given, limit the number of rows to read to nrows.

• labels (int or array-like of shape=(n_samples,), optional) – If a int is
given, label all sequences with given int. If an array-like is given, use the given labels for the
data in file. Note: will overwrite any ‘label’ data in input file.

• verbose (boolean, default=False) – If True, prints progress in transforming input to
sequences.

Returns

• events (torch.Tensor of shape=(n_samples,)) – Events in data.

• context (torch.Tensor of shape=(n_samples, context_length)) – Context events for each event
in events.

• labels (torch.Tensor of shape=(n_samples,)) – Labels will be None if no labels parameter is
given, and if data does not contain any ‘labels’ column.

Transforming .txt files into sequences is slower, but still possible using the following method call:

Preprocessor.text(path, nrows=None, labels=None, verbose=False)
Preprocess data from text file.

Note: Format: The assumed format of a text file is that each line in the text file contains a space-separated
sequence of event IDs for a machine. I.e. for n machines, there will be n lines in the file.

Parameters

• path (string) – Path to input file from which to read data.

• nrows (int, default=None) – If given, limit the number of rows to read to nrows.

• labels (int or array-like of shape=(n_samples,), optional) – If a int is
given, label all sequences with given int. If an array-like is given, use the given labels for the
data in file. Note: will overwrite any ‘label’ data in input file.

• verbose (boolean, default=False) – If True, prints progress in transforming input to
sequences.

Returns

• events (torch.Tensor of shape=(n_samples,)) – Events in data.

• context (torch.Tensor of shape=(n_samples, context_length)) – Context events for each event
in events.

• labels (torch.Tensor of shape=(n_samples,)) – Labels will be None if no labels parameter is
given, and if data does not contain any ‘labels’ column.

10 Chapter 3. Reference

Tiresias, Release 0.0.2

Future supported formats

Note: These formats already have an API entrance, but are currently NOT supported.

• .json files containing values for ‘timestamp’, ‘event’ and ‘machine’.

• .ndjson where each line contains a json file with keys ‘timestamp’, ‘event’ and ‘machine’.

Preprocessor.json(path, labels=None, verbose=False)
Preprocess data from json file.

Note: json preprocessing will become available in a future version.

Parameters

• path (string) – Path to input file from which to read data.

• labels (int or array-like of shape=(n_samples,), optional) – If a int is
given, label all sequences with given int. If an array-like is given, use the given labels for the
data in file. Note: will overwrite any ‘label’ data in input file.

• verbose (boolean, default=False) – If True, prints progress in transforming input to
sequences.

Returns

• events (torch.Tensor of shape=(n_samples,)) – Events in data.

• context (torch.Tensor of shape=(n_samples, context_length)) – Context events for each event
in events.

• labels (torch.Tensor of shape=(n_samples,)) – Labels will be None if no labels parameter is
given, and if data does not contain any ‘labels’ column.

Preprocessor.ndjson(path, labels=None, verbose=False)
Preprocess data from ndjson file.

Note: ndjson preprocessing will become available in a future version.

Parameters

• path (string) – Path to input file from which to read data.

• labels (int or array-like of shape=(n_samples,), optional) – If a int is
given, label all sequences with given int. If an array-like is given, use the given labels for the
data in file. Note: will overwrite any ‘label’ data in input file.

• verbose (boolean, default=False) – If True, prints progress in transforming input to
sequences.

Returns

• events (torch.Tensor of shape=(n_samples,)) – Events in data.

• context (torch.Tensor of shape=(n_samples, context_length)) – Context events for each event
in events.

3.1. Preprocessor 11

Tiresias, Release 0.0.2

• labels (torch.Tensor of shape=(n_samples,)) – Labels will be None if no labels parameter is
given, and if data does not contain any ‘labels’ column.

3.2 Tiresias

The Tiresias class uses the torch-train library for training and prediction. This class implements the neural network as
described in the paper Tiresias: Predicting Security Events Through Deep Learning.

class tiresias.Tiresias(*args: Any, **kwargs: Any)
Implementation of Tiresias

From Tiresias: Predicting security events through deep learning by Shen et al.

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

input_size

Size of input dimension

Type
int

hidden_size

Size of hidden dimension

Type
int

output_size

Size of output dimension

Type
int

k

Number of parallel memory structures, i.e. cell states to use

Type
int

3.2.1 Initialization

Tiresias.__init__(input_size, hidden_size, output_size, k)
Implementation of Tiresias

Parameters

• input_size (int) – Size of input dimension

• hidden_size (int) – Size of hidden dimension

• output_size (int) – Size of output dimension

• k (int) – Number of parallel memory structures, i.e. cell states to use

12 Chapter 3. Reference

https://github.com/Thijsvanede/torch-train
https://doi.org/10.1145/3243734.3243811
https://doi.org/10.1145/3243734.3243811

Tiresias, Release 0.0.2

3.2.2 Forward

As Tiresias is a Neural Network, it implements the forward() method which passes input through the entire network.

Tiresias.forward(X)
Forward data through the network

Parameters
X (torch.Tensor of shape=(n_samples, seq_len)) – Input of sequences, these will be
one-hot encoded to an array of shape=(n_samples, seq_len, input_size)

Returns
result – Returns a probability distribution of the possible outputs

Return type
torch.Tensor of shape=(n_samples, size_out)

3.2.3 Fit

Tiresias inherits its fit method from the torch-train module. See the documentation for a complete reference.

Tiresias.fit(X, y, epochs=10, batch_size=32, learning_rate=0.01, criterion=torch.nn.NLLLoss,
optimizer=torch.optim.SGD, variable=False, verbose=True, **kwargs)

Train the module with given parameters

Parameters

• X (torch.Tensor) – Tensor to train with

• y (torch.Tensor) – Target tensor

• epochs (int, default=10) – Number of epochs to train with

• batch_size (int, default=32) – Default batch size to use for training

• learning_rate (float, default=0.01) – Learning rate to use for optimizer

• criterion (nn.Loss, default=nn.NLLLoss) – Loss function to use

• optimizer (optim.Optimizer, default=optim.SGD) – Optimizer to use for training

• variable (boolean, default=False) – If True, accept inputs of variable length

• verbose (boolean, default=True) – If True, prints training progress

Returns
result – Returns self

Return type
self

3.2. Tiresias 13

https://github.com/Thijsvanede/torch-train
https://torch-train.readthedocs.io/en/latest/reference/module.html#fit

Tiresias, Release 0.0.2

3.2.4 Predict

The regular network gives a probability distribution over all possible output values. However, Tiresias outputs the k
most likely outputs, therefore it overwrites the predict() method of the Module class from torch-train.

Tiresias.predict(X, k=1, variable=False, verbose=True)
Predict the k most likely output values

Parameters

• X (torch.Tensor of shape=(n_samples, seq_len)) – Input of sequences, these will
be one-hot encoded to an array of shape=(n_samples, seq_len, input_size)

• k (int, default=1) – Number of output items to generate

• variable (boolean, default=False) – If True, predict inputs of different sequence
lengths

• verbose (boolean, default=True) – If True, print output

Returns

• result (torch.Tensor of shape=(n_samples, k)) – k most likely outputs

• confidence (torch.Tensor of shape=(n_samples, k)) – Confidence levels for each output

In addition to regular prediction, Tiresias introduces online prediction. In this implementation, the network pre-
dicts outputs for given inputs and compares them to what actually occurred. If the prediction does not match the
actual output event, we update the neural network before predicting the next events. This is done using the method
predict_online().

Tiresias.predict_online(X, y, k=1, epochs=10, batch_size=32, learning_rate=0.0001,
criterion=torch.nn.NLLLoss, optimizer=torch.optim.SGD, variable=False,
verbose=True, **kwargs)

Predict samples in X and update the network only if the prediction does not match y

Parameters

• X (torch.Tensor) – Tensor to predict/train with

• y (torch.Tensor) – Target tensor

• k (int, default=1) – Number of output items to generate

• epochs (int, default=10) – Number of epochs to train with

• batch_size (int, default=32) – Default batch size to use for training

• learning_rate (float, default=0.01) – Learning rate to use for optimizer

• criterion (nn.Loss, default=nn.NLLLoss) – Loss function to use

• optimizer (optim.Optimizer, default=optim.SGD) – Optimizer to use for training

• variable (boolean, default=False) – If True, accept inputs of variable length

• verbose (boolean, default=True) – If True, prints training progress

Returns

• result (torch.Tensor of shape=(n_samples, k)) – k most likely outputs

• confidence (torch.Tensor of shape=(n_samples, k)) – Confidence levels for each output

14 Chapter 3. Reference

https://github.com/Thijsvanede/torch-train

CHAPTER

FOUR

CONTRIBUTORS

This page lists all the contributors to this project. If you want to be involved in maintaining code or adding new features,
please email t(dot)s(dot)vanede(at)utwente(dot)nl.

4.1 Code

• Thijs van Ede

4.2 Academic Contributors

• Thijs van Ede

• Hojjat Aghakhani

• Noah Spahn

• Riccardo Bortolameotti

• Marco Cova

• Andrea Continella

• Maarten van Steen

• Andreas Peter

• Christopher Kruegel

• Giovanni Vigna

15

Tiresias, Release 0.0.2

16 Chapter 4. Contributors

CHAPTER

FIVE

LICENSE

MIT License

Copyright (c) 2021 Thijs van Ede

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

17

Tiresias, Release 0.0.2

18 Chapter 5. License

CHAPTER

SIX

CITING

To cite Tiresias please use the following publications:

van Ede, T., Aghakhani, H., Spahn, N., Bortolameotti, R., Cova, M., Continella, A., van Steen, M., Peter, A., Kruegel, C.
& Vigna, G. (2022, May). DeepCASE: Semi-Supervised Contextual Analysis of Security Events. In 2022 Proceedings
of the IEEE Symposium on Security and Privacy (S&P). IEEE. [PDF DeepCASE]

Shen, Y., Mariconti, E., Vervier, P. A., & Stringhini, G. (2018). Tiresias: Predicting security events through deep
learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS)
(pp. 592-605). [PDF Tiresias]

6.1 Bibtex

6.1.1 DeepCASE

@inproceedings{vanede2020deepcase,
title={{DeepCASE: Semi-Supervised Contextual Analysis of Security Events}},
author={van Ede, Thijs and Aghakhani, Hojjat and Spahn, Noah and Bortolameotti,␣

→˓Riccardo and Cova, Marco and Continella, Andrea and van Steen, Maarten and Peter,␣
→˓Andreas and Kruegel, Christopher and Vigna, Giovanni},
booktitle={Proceedings of the IEEE Symposium on Security and Privacy (S&P)},
year={2022},
organization={IEEE}

}

6.1.2 Tiresias

@inproceedings{shen2018tiresias,
title={Tiresias: Predicting security events through deep learning},
author={Shen, Yun and Mariconti, Enrico and Vervier, Pierre Antoine and Stringhini,␣

→˓Gianluca},
booktitle={Proceedings of the 2018 ACM SIGSAC Conference on Computer and␣

→˓Communications Security},
pages={592--605},
year={2018}

}

19

https://vm-thijs.ewi.utwente.nl/static/homepage/papers/deepcase.pdf
https://doi.org/10.1145/3243734.3243811

Tiresias, Release 0.0.2

20 Chapter 6. Citing

INDEX

Symbols
__init__() (preprocessor.Preprocessor method), 9
__init__() (tiresias.Tiresias method), 12

C
csv() (preprocessor.Preprocessor method), 9

F
fit() (tiresias.Tiresias method), 13
forward() (tiresias.Tiresias method), 13

H
hidden_size (tiresias.Tiresias attribute), 12

I
input_size (tiresias.Tiresias attribute), 12

J
json() (preprocessor.Preprocessor method), 11

K
k (tiresias.Tiresias attribute), 12

N
ndjson() (preprocessor.Preprocessor method), 11

O
output_size (tiresias.Tiresias attribute), 12

P
predict() (tiresias.Tiresias method), 14
predict_online() (tiresias.Tiresias method), 14
Preprocessor (class in preprocessor), 9

T
text() (preprocessor.Preprocessor method), 10
Tiresias (class in tiresias), 12

21

	Installation
	From source
	Dependencies

	Usage
	Overview
	Command line tool
	Examples

	Code
	Import
	Working example
	Modifying Tiresias

	Reference
	Preprocessor
	Formats
	Future supported formats

	Tiresias
	Initialization
	Forward
	Fit
	Predict

	Contributors
	Code
	Academic Contributors

	License
	Citing
	Bibtex
	DeepCASE
	Tiresias

	Index

